
Abstract. The direct inversion of the iterative subspace
(DIIS) solution to the iterative integral equation for-
malism polarized continuum model (IEF–PCM, 2001
Theor. Chem. Acc. 105:1186) is applied to the effective
fragment potential IEF–PCM interface (2002 J Chem
Phys 116:5023). Compared to a direct matrix-inversion
solution, the DIIS–PCM is up to an order of magnitude
more efficient both in computing time and memory
requirements for large systems. Multipole treatments of
long-range electrostatic interactions further reduce the
computing time by up to 50%. All the CPU intensive
computations are parallelized. The data presented in this
paper demonstrate that use of the iterative IEF–PCM is
an efficient way to model bulk solvation of large
biomolecules described by QM/MM.
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Introduction

In hybrid ‘‘quantum mechanics (QM)/molecular me-
chanics (MM)’’ methods the chemically active part of a
molecular system is treated with QM and the rest with
more approximate methods, such as MM [1, 2]. This
approach has proven especially useful in the study of
enzymatic reactions [3], where the enzyme active site and
substrate is treated with a QM method and the rest of
the protein with a MM force field. In these studies the
description of the bulk solvent varies. In some cases [4,
5, 6] the solvent molecules are treated explicitly (e.g. by a
TIP3P potential [7]), and their positions are averaged by

Monte Carlo or molecular dynamics. The large number
of energy and force evaluations necessary for this
treatment necessitates a relatively simple QM method
such as AM1 [8] or the empirical valence bond method
[9]. Alternatively, bulk solvation can be represented by a
continuum through the solution of the linearized Pois-
son–Boltzmann equation (LPBE). The QM/MM/LPBE
interface can take the form of scaled MM charges [10]
in a partially solvated QM/MM calculation [6] or a
simultaneous solution of the QM/MM and LPBE
equations [11, 12].

The interface between the effective fragment potential
(EFP) method [13, 14] and the integrated equation for-
malism polarized continuum model (IEF–PCM) method
[15], developed by Bandyopadhyay et al. [12], is an ex-
ample of the latter approach. Similarly, the GAMESS/
CHARMM QM/MM approach has recently been in-
terfaced with the PCM method by Cui [16]. The EFP/
PCM interface is similar to an all-ab-initio PCM calcu-
lation except that the electrostatic potential of the EFP
region is due to its multipole representation of the
electrostatic potential. The approach has been used to
reproduce the pKa of a residue in the 56-residue protease
inhibitor turkey ovomucoid third domain by Li et al.
[17]. However, the current implementation solves the
PCM equation through a matrix inversion, which was
found to be very central processing unit (CPU) intensive
for protein-sized systems [17]. Tomasi, Pomelli, Barone
and co-workers have addressed this general problem by
the development of an iterative solution to the IEF–
PCM equations, and demonstrated significant CPU time
savings for both QM and MM solutes [18–23]. This
paper discusses the implementation and testing of the
iterative solution of the EFP/IEF–PCM equations,
where the QM-self consistent-field (SCF) and IEF–PCM
equations are simultaneously iterated to self-consistency.
The paper presents the first use of the PCM method to
calculate the solvation energy of a protein described by a
QM/MM method.
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The paper is organized as follows. After a review
of the PCM, EFP/IEF–PCM, and iterative PCM, the
theory behind the EFP/iterative-IEF–PCM is discussed,
as are various approximations aimed at increasing the
computational efficiency of the method. Second, the
general computational methodology behind the calcu-
lations is discussed. Third, appropriate convergence
criteria are determined, and the iterative and matrix-
inversion solutions to the PCM equation are compared
for a variety of solutes. Fourth, the rate of convergence
is discussed. Fifth, the approximations discussed
previously are tested numerically. Finally, our findings
are summarized and future directions are discussed.

Theory

The PCM

In the PCM the solute molecule is placed in the bulk
solvent described as a polarizable continuum with a
dielectric constant e. The cavity the solute molecule
occupies in the bulk solvent can be defined in a variety of
ways, the most popular of which is to use interlocking
spheres centered at atoms or atomic groups. The surface
of the cavity is the boundary between the solute and sol-
vent. In the PCM the apparent surface charge (ASC)
method is used to describe the electrostatic interaction
between the solute and the bulk solvent. To numerically
solve the electrostatic boundary equation, the continuous
charge distribution on the boundary surface is divided
into a set of point charges at a finite number of boundary
surface elements, called tesserae. The resulting vector of
ASCs, q, is obtained by solving the matrix equation,

Cq ¼ g ; ð1Þ

where the vector g is a function of the molecular elec-
trostatic potential of the solute V, and C is a geometric
matrix. Both g and C have different forms for different
tessellation methods and different PCM formalisms. On
the basis of the GEPOL–GB tessellation procedure [24],
the C and g elements for the D-PCM are

Cii ¼
1

2
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e� 1
þ 1:07

ffiffiffiffiffiffiffiffiffi

4pai
p
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where ri, ai, n̂ni, and Ri are, respectively, the center, area,
orthogonal unitary vector, and the sphere radius for
tessera i.
For the C-PCM
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For the isotropic IEF–PCM
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where

Aii ¼ ai; Aij ¼ 0 ; ð5Þ
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In all cases, q is used to represent the electrostatic
potential of the solvent,

UASC ~rrð Þ ¼
X

NTS

i

q ið Þ
~rr �~rrij j ; ð8Þ

which, in turn, polarizes the solute (with Hamiltonian
H0),

H0 þ UASCð Þ W0j i ¼ E0 W0j i : ð9Þ

The total free energy of the solute–solvent system is

Etotal ¼ W0h jH0 W0j i þ ENN þ Gelec ; ð10Þ

where ENN is the nuclear–nuclear repulsion energy and
Gelec is the electrostatic interaction between the solute
and the bulk solvent,

Gelec ¼
1

2
q � V ; ð11Þ

and W¢ is the solute wavefunction that minimizes Etotal.
The solute nuclear potential, VN, and electronic

potential, Ve, can be separated and used to determine
the corresponding qN and qe independently,

Gelec¼
1

2
q �V¼1

2
qNþqeð Þ� VNþVeð Þ

¼1
2
qN �VNþqN �Veþqe �VNþqe �Veð Þ : ð12Þ

This separation is useful since qe is affected by the pen-
etration of W¢ into the continuum, and can be corrected
by various means [25, 26].

The integrated EFP/PCM method

Bandyopayhay et al. [12] have interfaced the IEF–PCM
and the EFP method in the GAMESS program [27]. The
EFP method [14] is a QM/MM method in which the
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MM region is described by static multipoles (up to oc-
tupoles) and dipole polarizability tensors. The integrated
EFP/PCM method differs from the full ab initio PCM
only in the solute potential V. In the full ab initio PCM,
V consists of two terms, the electronic term Ve and the
nuclear term VN:

V ¼ VQM ¼ Ve þ VN ; ð13Þ

while in the EFP/PCM method, V consists of four terms,
the electronic term Ve, the nuclear term VN, the EFP
multipole term VMUL and the EFP induced-dipole term
VPOL:

V ¼ VQM þ VEFP

¼ Ve þ VN þ VMUL þ VPOL : ð14Þ

The total free energy of the solute–solvent system is

Etotal ¼ W0h jH0 þ UEFP W0j i þ ENN þ EN�EFP þ Gelec ;

ð15Þ

where UEFP and EN-EFP describe the interaction of the
EFP with the electrons and nuclei of the QM region,
respectively. Gelec is given by (cf. Eq. 12)

Gelec ¼
1

2
qN þ qe þ qMUL þ qPOLð Þ

� VN þ Ve þ VMUL þ VPOLð Þ : ð16Þ

Similar to before, W¢ is the wavefunction that minimizes
Etotal of Eq. (15), so that the QM charge density is
polarized by the EFP and continuum solvent regions
simultaneously.

In both the all-QM and QM/EFP implementation in
GAMESS, Eq. (1) is solved by the direct matrix-inver-
sion method,

q ¼ C�1g ; ð17Þ

which assumes the coefficient matrix C is nonsingular.
For a small solute this method is very efficient since C)1,
once computed and stored, can be used to compute a
new q vector for each SCF iteration. However, it is less
efficient for larger solutes because the CPU time and
memory requirements scale as NTS

3 and NTS
2 , respec-

tively. For example, in an application of the EFP/PCM
interface by Li et al. [17] to the calculation of the pKa in
the 56-residue protein turkey ovomucoid third domain,
the calculation of the solvation energy took several days,
while the gas-phase calculation on the same computer
took only 25 min.

Iterative implementation of the IEF–PCM

The difficulty of applying the matrix-inversion imple-
mentation to large solutes, known for some time, has

been addressed by implementing iterative solutions to
Eq. (1). For IEF–PCM the iterative solution is done in
two steps (see Appendix 1),

S0q1 ¼ �V ; ð18Þ

D0q2 ¼ �
I

e� 1
q1 ; ð19Þ

with

q ¼ q1 þ q2 ; ð20Þ
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Here we note that S¢ in Eq. (21) is the C-PCM coefficient
matrix in Eq. (3), so Eq. (18) is the C-PCM matrix
equation. D¢ in Eq. (22) is similar to the D-PCM coef-
ficient matrix in Eq. (2) and Eq. (19) is a D-PCM-like
equation based on the scaled C-PCM polarization
charges. In other words, the isotropic IEF–PCM can be
decomposed into two phases, the C-PCM phase and the
D-PCM-like phase. We refer to them as ‘‘phase 1’’ and
‘‘phase 2’’ hereafter.

The simplest iterative solution to the linear matrix
equation,

MX ¼ Y ; ð23Þ

is the point Jacobi iterative (PJI) method, where the
coefficient matrix M is partitioned into a diagonal
matrix M0 and an off-diagonal matrix M1:

M ¼M0 þM1: ð24Þ

The PJI solution is

X nð Þ ¼M�10 Y�M1X
n�1ð Þ

� �

: ð25Þ

According to the Stein–Rosenberg theorem, conver-
gence is guaranteed if M is a diagonal dominant matrix
[28]. However, S¢ of Eq. (18) is not diagonally dominant
using the current tessellation scheme GEPOL-GB (Ap-
pendix 2) and it is found empirically that the associated
PJI approach is divergent. D¢ of Eq. (19) is diagonally
dominant for well-tessellated cavities but not for general
cases (Appendix 2) and the associated PJI may be either
convergent or divergent. Other methods, such as a semi-
iterative method, are necessary to solve the IEF–PCM
equations. An earlier study [22] has tried various meth-
ods, such as conjugate gradients and damping functions,
and found direct inversion of the iterative subspace
(DIIS [29]) most effective.
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The DIIS method is a semi-iterative method that
predicts the next guess X(n)* by linearly combining all
(n ) 1) or part of (n ) m) the previous iterates:

X nð Þ� ¼
X

n�1

k¼m

kkX
kð Þ : ð26Þ

The weight factors, kk, are determined by a least-squares
procedure that minimizes the quantity

S kð Þ ¼
X

n�1

k¼m

kke
kð Þ

�

�

�

�

�

�

�

�

�

�

2

ð27Þ

under the constraint

X

n�1

k¼m

kk ¼ 1 ; ð28Þ

where the error vector for iteration k, e(k), is defined as
(cf. Eq. 26)

e kð Þ¼ X kð Þ � X kð Þ�;
X kð Þ¼M�10 Y�M1X

kð Þ�� �

:
ð29Þ

Minimizing the quantity S(k) under the constraint in
Eq. (28) is equivalent to minimizing the quantity

S kð Þ þ l
X

n�1

k¼m

kk � 1

 !

ð30Þ

where l is a Lagrange multiplier, or solving the linear
equation

by direct inversion of the error matrix.
Convergence is reached when the root-mean-square

(RMS) of the error,

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e nð Þ � e nð Þ

NTS

s

; ð32Þ

is below a user-defined threshold.
This approach has been shown to result in good

convergence for solutes described by point charges [22].
Next we consider the implementation of the DIIS
iterative solution to the IEF–PCM/EFP equations, and
its application to systems as large as proteins.

Iterative implementation of the IEF–PCM/EFP
interface

The implementations of the iterative DIIS solution
of the IEF–PCM equation for all-QM and QM/EFP
in GAMESS are straightforward. The main differ-
ence between the two implementations is that the
computational bottleneck shifts from the computa-
tion of the two-electron integrals to the iterative
solution of the PCM equation on going from QM/
PCM to QM/EFP/PCM calculations. The computa-
tional steps, and their associated costs, for a given
SCF iteration are

1. The computation of Ve (cf. Eq. 14), which scales as
N 2
AONTS, where NAO is the number of basis functions

in the QM region.
2. The solution of Eqs. (18) and (19), which both scale

as N 2
TSNITER, where NITER is the total number of

iterations needed for convergence.
3. The computation of W0h jUASC W0j i (cf. Eq. 9), which

scales as N2
AONTS.

For our biochemical applications of the QM/EFP/
PCM method the second step is the computational
bottleneck, since NAO�350, NITER�600, NTS�10,000.
However, for a larger QM region, steps 1 and 3 may
dominate. The computational costs of all steps can in
principle be reduced as discussed next.

The solute electrostatic potential

The solute electrostatic potential V is calculated at each
tessera according to Eq. (14). The most CPU intensive

part of this step is the calculation of V due to the
electrons in the QM region at each tesserae representa-
tive point ri,

Ve ið Þ ¼ trPU ið Þ ; ð33Þ

where P is the density matrix in the atomic orbital basis
{v} and U(i) has the elements

U ið Þlm¼ vl
1

~rr �~rrij j

�

�

�

�

�

�

�

�

vm

	 


: ð34Þ

Hence the computation of V scales as N2
AONTS.
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For a QM/EFP solute, typically only a small part of
the solute is described ab initio and, hence, many
tesserae are situated outside the density of the ab initio
region (Fig. 1). For a distant tessera, i, the potential of
the electrons in the ab initio region can be approximated
by a multipole expansion without significant loss of
accuracy,

Ve ið Þ ¼ V Mult
e ið Þ: ð35Þ

Here Stone’s distributed multipole analysis [30] is
used to generate V Mult

e ið Þ and the expansion points are
placed at each atom and bond midpoint, as in the EFP
method.

Tessera i (at position xi, yi, zi) is considered ‘‘dis-
tant’’ if, xi>xmax+dABI or xi<xmin)dABI, where xmax

and xmin are the largest and smallest x coordinates of
the atoms in the QM region (and similarly for y and z)
and dABI is 4.0 Å. Compared to a simple distance-
dependent criterion (e.g. between ri and the center of
mass of the QM) region, this ‘‘box approach’’ allows
for more aggressive screening for nonspherical QM
regions. A more elaborate distance-dependent criterion,
such as the minimum distance between ri and a QM
atom will significantly decrease the CPU time-saving
since it must be performed NTS times. Though the ‘‘box
approach’’ is not strictly rotationally invariant, the
default value of 4.0 Å for dABI is large enough that this
does not present a practical problem, and in general the
approximation is found to affect the final SCF energy
by less than 10)5 hartrees.

The computing of the U(i) elements in Eq. (34) is
parallelized by using the distributed data interface [31]
(DDI) in GAMESS. The conventional way to deal with
the U(i) integrals is to compute them for all the tesserae
and store them on the hard disk, then read them from
the disk for every tessera. This approach can be very
time consuming and necessitate a large disk storage
space. A direct method (similar to direct SCF) is im-
plemented and is found to be more efficient, especially
for parallel computing.

Iterative solution of the PCM equation

Equation (18) is solved iteratively by partitioning S¢ into
two parts (cf. Eq. 24):

S0 ¼ S00 þ S01 : ð36Þ

The PJI equation is

q
nð Þ
1 ¼ � S00ð Þ�1 Vþ S01 q

n�1ð Þ
1

� �

; ð37Þ

i.e.

q nð Þ
1 ið Þ ¼ � 1

1:07
ffiffiffiffiffiffiffiffiffiffiffiffi
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X
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j 6¼i

q n�1ð Þ
1 jð Þ
~rri �~rrj
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�

�

�

 !

: ð38Þ

Similarly, Eq. (19) is solved iteratively by partitioning
D¢ into two parts,

D0¼D00 þD01: ð39Þ

The PJI equation is

q
nð Þ
2 ¼ � D00ð Þ�1 q1

e� 1
þD01 q

n�1ð Þ
2

� �

; ð40Þ

i.e.
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ð41Þ

Clearly, the computations of the last terms in Eqs. (38)
and (41) both scale as NTS, and must be repeated for
NTS charges until convergence is reached (in NITER

total steps). Thus the entire procedure scales roughly
as N2

TS NITER;1 þ NITER;2

� �

. Empirically, we find that
NITER,1>NITER,2 and that the magnitude of both can
vary greatly from one SCF cycle to another.

To decrease the CPU time required for this step
we have implemented the linear-scaling scheme due
to Pomelli and Tomasi [23]. We briefly summarize
the principle behind this method using Eq. (38) and
note that similar considerations apply to Eq. (41). The
calculation of the solvent electrostatic potential at each
tessera is approximated by

Fig. 1. The QM/EFP/PCM system. The tesserae outside of the dABI

boundary see the QM region as Stone’s multipole expansion points.
The electrons in the QM region see the apparent surface
charges (ASCs) outside dASC as regionwise multipole expansion
points
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Here, contributions from each sphere (k, centered at Rk)
on the cavity surface, are identified and approximated for
large ŒRi ) RkŒ (where ri is on a sphere with center Ri).
For the K2 spheres for which R2>ŒRi ) RkŒ>R1 the
electrostatic potential of the charges belonging to sphere
k is approximated by a multipole expansion centered
at Rk and truncated at quadrupoles [L(i)k]. For the
remaining K3 spheres for which ŒRi ) RkŒ>R2, the
multipole expansion is truncated at the monopole term
[Q(i)k]. For molecules containing only neutral groups
the last term in Eq. (42) can be neglected and in this
case the CPU time is found to vary linearly withNTS. The
computations of Eqs. (38), (41) and (42) are parallelized
with DDI.

At the first SCF cycle, we use the following initial
guesses:

q
0ð Þ�
1 ¼ � I

20
� S00ð Þ�1�V ; ð43aÞ

q
0ð Þ�
2 ¼ � I

e
� q1 : ð43bÞ

The initial guess for the phase 1 charges is obtained from
Eq. (37) by setting q1

(n)1)=0. Empirically, we found that
scaling by 1/20 reduces NITER,1, though modestly. The
initial guess for the phase 2 charges is obtained by
solving the common approximation q � e�1

e q1, for q2
(recall that q1 corresponds to C-PCM charges and
q = q1+q2). For subsequent SCF cycles, q1 and q2 from
the last SCF cycle are used instead of Eq. (43a).

Electrostatic interactions between solute electrons
and the ASCs

The electrostatic potential due to the ASCs is included in
the Fock matrix of the QM region at each SCF iteration,
so that W¢ of Eq. (15) minimizes Etotal.

F QM0

lm ¼ F QM
lm þ Tlm ; ð44Þ

where

Tlm ¼
X

NTS

i

U ið Þlmq ið Þ ; ð45Þ

where U(i)lm is defined in Eq. (34). The cost of com-
puting T is N 2

AONTS.
Since many tesserae are far away from the ab initio

region it is possible to apply the multipole expansion
approximation discussed in the previous subsection:
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The K2 spheres, for which this approximation is used, are
determined by the ‘‘box approach’’ described already
(Fig. 1). Tessera i (on a sphere centered at position Xi, Yi,
Zi) is considered ‘‘distant’’ if Xi>xmax+dASC or Xi<
xmin ) dASC, where xmax and xmin are the largest and
smallest x coordinates of the atoms in theQM region (and
similarly for y and z). The evaluation of the T elements in
Eqs. (45) and (46) is also parallelized with DDI and a
direct method is implemented to avoid hard disk work.

Computational methodology

For protein QM/EFP/PCM calculations, the polarizability tensors
are not included in the EFP description. The reason is somewhat
complicated. Within the EFP method intrafragment energies (in-
cluding interactions between induced dipoles) are not evaluated
since the internal EFP geometry is frozen and the internal energy
change due to polarization of the EFP is treated by the linear re-
sponse approximation (giving rise to the factor of 1/2 in Eq. 16).
However, the ACSs, which have contributions from the induced
dipoles, are interacting, leading to an error in the EFP/PCM energy.
For small neutral EFPs (such as the water EFPs used with the
original implementation [12]) this error is probably small, and is
out-weighed by a more accurate description of EFP/EFP and EFP/
QM interaction energies since they include polarization terms.
However, for a system described by a single large EFP with many
charged functional groups, the inclusion of polarizable points leads
to large errors and in some cases to a divergence of the energy. A
previous study by some of us [17] has shown that sufficiently ac-
curate solvation energies can be computed for large systems without
the inclusion of dipole-polarizability tensors in the EFP region.

The details of constructing and using EFPs in systems with
covalent QM/EFP boundaries can be found elsewhere [14, 17,
34, 35].

All calculations were performed with a locally modified version
of the GAMESS program [27] on four-CPU IBM RS/6000 44P 270
workstations.

Results and discussion

Iterative convergence criterion

The iterative solution to the PCM equation at each SCF
cycle is considered converged when the RMS of the
iterative error (Eq. 32) falls below a convergence crite-
rion. Because the average absolute charge on the tesserae
varies from 0.002 au for neutral and less polar molecules
to 0.005 au for charged and more polar molecules, the
convergence criterion must be considerably smaller. The
final SCF energies and CPU time usage obtained for four
molecules (Fig. 2) are compared in Table 1 using four
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convergence criteria: 10)5, 10)6, 10)7 and 10)8 au. Com-
parisons of the final SCF energies to the matrix-inversion
solutions show that the convergence criterion needed to
reproduce the SCF to within 10)5 hartrees is size-depen-
dent. A criterion of 10)7 au is adequate for systems with
around 1,000 tesserae or fewer, while 10)8 is needed for a
system with 10,000 tesserae. Use of the 10)8 convergence
criterion does not significantly increase the required CPU
time for smaller molecules, so this criterion is used for all
molecules.

Since the electron density changes in the SCF course,
looser criteria could be used in the early SCF cycles
when the density is far from convergence. The final SCF
energy and the CPU time obtained by using looser
iterative convergence criteria in the early SCF cycles
where the density change is above 0.01 au are listed in
Table 2. The data indicate that the accuracy of the SCF
final energy is determined only by the final criterion (i.e.
10)8 au), indicating that obtaining very accurate ASCs is
unnecessary in the early cycles.

The energies and density changes for each SCF iter-
ation for the molecule OMTKY3-Lys55-a are shown in
Fig. 3. Since the PCM is not a variational method, the
energies may be artificially below the final SCF energy,
owing to the inaccuracy in the determination of the ASC
with a loose convergence criterion; however, subsequent
use of the tighter convergence criterion recovers this
error. The convergence of the density is insensitive to the
quality of the ASCs.

In the current implementation both the loose criteri-
on and the SCF density change, which defines the early
SCF cycles, can be defined by the user, with the default
values 5 · 10)4 and 0.01 au. For a system with around
10,000 tesserae, the use of 5 · 10)4 au convergence cri-
teria for such early SCF cycles can reduce the computing
time by up to 28%.

Comparison of the matrix-inversion
and iterative PCM solutions

The final SCF energies and requisite CPU times
obtained for a variety of molecules (cf. Fig. 2) using
both the matrix inversion and iterative IEF–PCM (using
the convergence criteria described previously) are com-
pared in Table 3. The data show that the matrix-inver-
sion and iterative implementations consistently produce
SCF energies that agree to within 10)5 hartrees.�

For small molecules described by around 1,000
tesserae or fewer, the matrix-inversion method tends to

be faster than the iterative version. The exact relative
timings depend on the description of the solute, since the
evaluation of the solute potential is significantly faster
for a QM/EFP solute. For example, for GKG-H the
iterative method is slower than the matrix-inversion
method for the QM solute, but not for the QM/EFP
solute. For larger QM/EFP solutes, the iterative method
is more than 20 times faster than the matrix-inversion
method, thus shortening the run time from days to hours
on our computers. In addition, the memory require-
ments are significantly smaller for the iterative method
as discussed in the next subsection.

Performance of the DIIS method

In Sect. 2 it was argued that the PJI method diverges
for IEF–PCM, and that semi-iterative methods such
as DIIS are necessary. The RMS error in the PCM
iteration phases 1 and 2 of the first SCF cycle for
GKG-H, with PJI and DIIS, is shown in Fig. 4.
A ‘‘tight’’ criterion of 10)8 is used for illustrative
purposes. Both PJI iterations clearly diverge, while
DIIS starts to force the convergence from the third step
when interpolation is available. The first step is the
initial guess and the second step has only one previous
step; thus no interpolation can be done. So the first two
steps of phase 1 are identical for both PJI and DIIS
iterations.

A plot similar to that in Fig. 4 is shown in Fig. 5a,
for OMTKY3-Lys55-a. Clearly, more iteration steps
are needed to converge a larger number of ASCs, and
empirically we find that approximately NTS/20 itera-
tions are required for convergence. The DIIS needs
2 · NDIIS · NTS words of core memory to store the
previous iterates and their error vectors, where NDIIS

is the maximum number of iterations. For OMTKY3-
Lys55-a the memory requirement is thus around
10 megawords, still an order of magnitude less than
that required for the matrix-inversion method. How-
ever, for very large molecules, both NTS and NDIIS are
very large and the core memory (around NTS

2/10
words) becomes significant.

The memory requirement can be addressed by storing
data on a hard disk. However, the inversion of the
NDIIS·NDIIS error matrix may become a computational
bottleneck for large NTS. Another solution is to only use
the last N¢DIIS error vectors (cf. Eq. 27) as is commonly
done for SCF convergence. The convergence rate for
several values of N¢DIIS for OMTKY3-Lys55-a is shown
in Fig. 5b. Clearly, the performance of the IEF–PCM
DIIS method is very sensitive to the size of the iterative
subspace. DIIS with N¢DIIS smaller than 200 shows
no sign of convergence, while the convergence rate is
very low for N¢DIIS=200 and 400, so neither meets the
convergence criterion in 1,000 steps. Thus, limiting the
size of the iterative subspace to reduce the memory
requirements for large systems does not seem like a
promising approach.

� The original EFP/PCM-by-matrix-inversion interface by
Bandyopayay et al. used the following approximations (cf.
Eq. 16: 1

2 qe � VMUL þ qMUL � Veð Þ � qMUL � Ve and 1
2 qe � VPOLþð

qPOL � VeÞ � qPOL � Ve. These approximations are adequate for
small and neutral molecules, but not for large and charged mole-
cules. In this implementation, all terms are computed explicitly so
that the final SCF energies agree numerically with the iterative
results.
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Increasing computational efficiency

The use of multipole expansion methods to further
reduce the computing time for three steps in the PCM
calculation was described previously. This subsection
discusses the resulting CPU time savings.

The solute electrostatic potential

The final SCF energy and CPU time of the iterative IEF–
PCM calculation of OMTKY3-Lys55-a and OMTKY3-
Lys55-b, using different cutoff values (dABI) for ‘‘distant’’
tesserae for which the solute electrostatic potential is

Fig. 2a–e. Schematic representations of
the molecules used in this work. a Glu-
model-a: a small model of a glutamic
acid residue in a protein; Glu-model-b
corresponds to the deprotonated form.
b 6-Aminocaproate and c the tripeptide
glycyl–lysyl–glycine, GKG-H, both
divided into a QM, buffer, and EFP
region. d OMTKY3-Lys55-a or
OMTKY3-Lys55-b: ab initio/buffer/EFP
regions (red/blue/green) division of turkey
ovomucoid third domain, with Lys55 and
Tyr20 are described by QM. a and b refer
to protonated and deprotonated Lys55,
respectively. e OMTKY3-glu43-a or
OMTKY3-glu43-b: same as for d but with
Glu43 described by QM

Table 1. The final SCF energy (hartrees) and CPU time (minutes) of the iterative IEF –PCM computation for four molecules by using
various convergence criteria. The digits in the energy that differ from matrix-inversion values (in Table 3) are underlined. NTS is the
number of tesserae on the solute cavity surface, reflecting the size of the molecule. No polarizable points are used in the QM/EFP method.
The solvent is water with e=78.39. The multipole expansion approximation methods are turned off

Molecules Method NTS Iterative convergence criterion

10)5 10)6 10)7 10)8

Acetic acid QM 163 )227.8237304421 )227.8237325730 )227.8237330147 )227.8237330138
0.8 0.8 0.8 0.8

GKG-H QM/EFP 1,121 )222.7315447940 )222.7315036907 )222.7314949153 )222.7314946143
2.6 2.4 2.7 2.7

OMTKY3-Lys55-a QM/EFP 10,060 )691.6263856511 )691.6109597206 )691.6088688428 )691.6088567959
127.0 167.2 165.5 225.9

OMTKY3-Lys55-b QM/EFP 10,064 )691.1603773378 )691.1456263586 )691.1432956617 )691.1432639944
133.2 174.1 179.5 239.5
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represented by multipoles, are listed in Table 4. The total
SCF energy can be reproduced to within 10)5 hartrees,
even when using a very aggressive dABI value of 2.0 Å.
This cutoff classifies 88%of all tesserae as distant from the
ab initio region, and reduces the total CPU time by
18%. We use a default value for dABI of 4.0 Å in this
implementation since the accuracy of the SCF energy is
somewhat improved at little CPU time expense.

Iterative solution of the PCM equations

The final SCF energy and CPU time of the iterative
IEF–PCM calculation of OMTKY3-Lys55-a and
OMTKY3-Lys55-b for different values ofR1 andR2 used
to determine whether pairs of spheres are near (K1),
mid-range (K2) or distant [(K3) cf. Eq. (42)] are listed in
Table 5. The total SCF energy can be reproduced to
within 2 · 10)4 hartrees by using R1/R2 values of 15/

30 Å. These cutoffs classify 39% and 2% of all pairs of
tesserae asmid-range anddistant, respectively, and reduce
the total CPU time by 16%. Using smaller R1/R2 values
leads to errors in the SCF energy of up to 2 · 10)3

hartrees, which is unacceptable for most applications.

Electrostatic interactions between solute electrons
and the ASCs

The final SCF energy and CPU time of the iterative
IEF–PCM calculation of OMTKY3-Lys55-a and
OMTKY3-Lys55-b for different values of dASC in the
classification of distant ASC regions in the multipole
expansion approximation of the solvent potential
(cf. Eq. 46) are listed in Table 6. Even a dASC value of
15 Å can result in SCF energy errors of greater than
10)3, while the CPU time savings are very modest
because the step time is a small part of the total time.
For larger molecules with more tesserae and/or more
basis functions, the saving of the total CPU time may be
significant; however, dASC must be larger than 15 Å to
ensure the 10)4 hartree accuracy for the SCF energy. We
use a default value of 20 Å, which does not result in any
CPU timesaving for the systems considered here.

Total CPU time savings and parallel efficiency

The combined use of the multipole expansions described
previously leads to a 33% decrease in CPU time for
OMTKY3-Lys55-a. When combined with the CPU time
saving obtained by using a loose ASC-convergence cri-
terion for early SCF cycles (cf. Sect. 4.1), an overall 52%
reduction in CPU time is obtained for OMTKY3-Lys55-
a. This CPU time-reduction is expected to increase for
even larger systems.

Virtually all aspects of the PCM solution algorithm
have been parallelized using the distributed data inter-
face (DDI) in GAMESS. Timings for 1–4 nodes on
a dedicated four-CPU RS/6000 44P 270 machine for
OMTKY3-Lys55-a are listed in Table 7. Timings are
listed for the SCF step where the ACS-convergence
criterion decreases from 5 · 10)4 to 10)8, because that
step (in general) is the most time-consuming SCF step
(i.e. NITER is largest). It is evident that all parts of the

Table 2. The final SCF energy (hartrees) and CPU time (minutes) of the iterative isotropic IEF–PCM computation for four molecules by
using various ‘‘loose’’ iterative convergence criteria at the early SCF cycles where the density change is above 0.01 au. After the density
change falls below 0.01 au, the criterion switches to 10)8

Molecules Method N TS Loose criteria for early SCF cycles Tight criterion

5·10)4 5·10)5 5·10)6 10)8

Acetic acid QM 163 )227.8237330214 )227.8237330144 )227.8237330138 )227.8237330138
0.8 0.8 0.8 0.8

GKG-H QM/EFP 1,121 )222.7314945843 )222.7314945821 )222.7314945690 )222.7314946143
2.5 2.7 2.7 2.7

OMTKY3-Lys55-a QM/EFP 10,060 )691.6088564955 )691.6088567447 )691.6088558327 )691.6088567959
175.9 186.9 209.3 225.9

OMTKY3-Lys55-b QM/EFP 10,064 )691.1432704623 )691.1432704964 )691.1432702452 )691.1432639944
172.7 183.5 208.6 239.5

Fig. 3. The energies and density changes along the SCF course
in the iterative isotropic IEF–PCM calculation for the mole-
cule OMTKY3-Lys55-a by using a strict criterion (10)8 au) and a
loose criterion (5 · 10)4 au) in the early SCF cycles where
the density changes are above 0.01 au. After the density change
falls below 0.01 au, the strict criterion is used till the SCF
converges. The intermediate energies, which include the PCM
electrostatic interaction, may be artificially lower than the final
energy owing to use of the loose criterion. Though the energy is
sensitive to the quality of the ASCs, the SCF convergence is not;
thus similar density changes are found for the strict and loose
criteria
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PCM solution scale well up to four nodes. While the
ASC iterations dominate the CPU time for this SCF
step, the other terms may dominate when NITER is small
(e.g. in the last few SCF steps) or for systems with a
larger QM region, and it is this important that all
aspects of the iterative PCM method are parallelized.

Conclusions

The DIIS solution to the IEF–PCM [22] is applied to the
EFP/IEF–PCM interface [12]. The iterative IEF–PCM
equation is shown to be inherently divergent, so the use
of a method like DIIS to force convergence is essential
(Fig. 4). The entire iterative subspace must be used in
the DIIS solution to achieve convergence for large sys-
tems (Fig. 5b). The accuracy of the iterative solutions is
verified by reproducing SCF energies, obtained by a
matrix-inversion solution of the IEF–PCM equation, to
within 10)5 hartrees for a variety of molecules (Table 3,
Fig. 2). For a large solute with 10,000 tesserae, the
iterative solution is an order of magnitude faster than
the matrix-inversion method.

For a typical application of the EFP/IEF–PCM
method, the solute is described by a small ab initio re-
gion surrounded by a large EFP region. In this case the
iterative solution of the IEF–PCM equation, performed
at each SCF step, is the computational bottleneck.
Several methodological innovations are introduced to
reduce the CPU time:

1. A looser convergence criterion for the PCM equation
solution is used at early SCF steps (Table 2).

2. Various multipole expansions are introduced to treat
long-range electrostatic interactions (Tables 2, 5, 6).

3. Virtually all aspects of the solving the IEF–PCM
equations are parallelized (Table 7).

The first two implementations reduce the CPU time
by up to around 50%, and good scaling is found for up
to four nodes (the highest considered).

The data presented in this paper demonstrate that use
of the iterative IEF–PCM method is an efficient way to
model bulk solvation of biomolecules described by QM/
MM. However, for significantly larger solutes, storing

Fig. 4. Root mean square (RMS) of the errors of the iteration for
phases 1 and 2 of the first SCF cycle in the iterative isotropic IEF–
PCM. The molecule is GKG-H (method QM/EFP, no polarizable
points) with NTS=1,121. Both point Jacobi iterative (PJI) phases
are divergent, while the direct inversion of the iterative subspace
(DIIS) phases are convergent

Table 3. The comparison between the matrix inversion and iterative isotropic IEF–PCM in terms of the final SCF energy (hartrees) and
CPU time (minutes). The CPU time needed for the gas-phase energy calculation is also listed for comparison. The initial loose iterative
convergence criterion is 5·10)4. EFP(p) denotes the use of polarizable points in the EFP region

Molecule Method N TS Final SCF energy CPU time

Inversion Iterative Gas Inversion Iterative

Methanethiol QM 99 )437.2392629373 )437.2392629361 0.1 0.1 0.7
Methanethiolium QM 101 )437.7038865702 )437.7038865703 0.0 0.1 0.7
Methylammonium QM 105 )95.6852579219 )95.6852579253 0.0 0.1 0.6
Methylamine QM 105 )95.2169559843 )95.2169559836 0.0 0.1 0.6
Imidazolium QM 160 )225.2959240179 )225.2959240169 0.4 0.5 1.1
Imidazole QM 162 )224.8308136448 )224.8308136464 0.4 0.5 1.0
Acetate QM 162 )227.3704781631 )227.3704781648 0.3 0.4 0.9
Aceticacid QM 163 )227.8237330175 )227.8237330214 0.2 0.3 0.8
Phenol QM 224 )305.5708382874 )305.5708382867 1.1 1.4 2.0
Phenolium QM 247 )305.1036153418 )305.1036153424 1.5 2.7 3.4
6-Aminocaproate QM/EFP(p) 314 )197.3163874626 )197.3163949099 0.6 1.3 1.9
6-Aminocaproate QM/EFP 314 )197.3096895937 )197.3096895805 0.6 0.9 1.4
6-Aminocaproate QM 320 )438.5400981377 )438.5400981347 6.4 6.9 8.4
Glu-model-a QM 451 )719.5009997138 )719.5009997296 8.9 10.2 10.7
Glu-model-b QM 459 )719.0468693271 )719.0468692934 12.0 14.5 15.9
GKG-H QM 1,110 )908.1238693181 )908.1238693401 17.0 25.9 27.0
GKG-H QM/EFP(p) 1,121 )222.7401532659 )222.7401472857 0.8 6.4 4.9
GKG-H QM/EFP 1,121 )222.7314945397 )222.7314945843 0.8 4.5 2.5
OMTKY3-Lys55-a QM/EFP 10,060 )691.6088566221 )691.6088564955 25.8 3,972.9 175.9
OMTKY3-Lys55-b QM/EFP 10,064 )691.1432702564 )691.1432704623 25.3 5,391.5a 172.7
OMTKY3-Glu43-a QM/EFP 10,066 )827.3567145031 )827.3567155047 22.5 5,448.6a 183.3
OMTKY3-Glu43-b QM/EFP 10,075 )826.8990567991 )826.8990566155 28.6 3,974.8 210.1

aTwo nodes instead of three
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and diagonalizing the DIIS matrix may prove prohibi-
tive. Further improvements, in particular the use of the
DEFPOL tessellation scheme [36], which gives rise to
a smaller number of tesserae for large systems than the
current GEPOL-GB scheme, are planned to address this
concern.
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Appendix 1

By substituting Eq. (4) into Eq. (1), we obtain the iso-
tropic IEF–PCM matrix equation:

A

2
�D

� ��1 eþ 1

e� 1
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2
�D

� �

A�1SA�1q ¼ �V : ð47Þ

Equation (47) can be rearranged,
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e� 1
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and the right-hand side separated to give
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Equation (49) can be written as two independent
equations,

eþ 1

e� 1
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e� 1
V ; ð51Þ

Fig. 5. a RMS of the errors of the iteration for phases 1 and 2
of the first SCF cycle in the iterative isotropic IEF–PCM. The
molecule is OMTKY3-Lys55-a with NTS=10,060. The DIIS phases
are convergent. b DIIS performance depends on its size. Five DIIS
sizes are tested in phase 1 of the first SCF cycle in the iterative
isotropic IEF–PCMcalculation for themoleculeOMTKY3-Lys55-a
and the RMSs are plotted verses the iteration steps. The numbers
beside the lines are the maximum size of the DIIS. Full means all
the previous iterates are included. The forking points are where the
maximum DIIS size is reached and the initial iterates start to be
discarded from the DIIS

Table 4. The final SCF energy (ESCF in hartrees) and CPU time of the iterative isotropic IEF–PCM computation for the molecules
OMTKY3-Lys55-a and OMTKY3-Lys55-b by using various dABI to define the distant tesserae in the multipole expansion representation
of the electronic part of the solute potential. Napx is the number of distant tesserae that see the electronic potential as Stone’s multipole
expansion points. Ttotal is the total CPU time (minutes) to finish the job and Tstep is the step time (seconds) to finish the electronic
potential evaluations for all the tesserae (for one SCF cycle)

Molecules NTS dABI=2.0 Å dABI=4.0 Å dABI=8.0 Å dABI=¥

OMTKY3-Lys55-a 10,060 ESCF )691.6088471936 )691.6088555524 )691.6088555013 )691.6088564955
Ttotal (m) 144.0 147.7 157.8 175.9
Tstep (s) 22.85 43.31 93.38 197.38
Napx 8,904 7,856 5,323 0

OMTKY3-Lys55-b 10,064 ESCF )691.1432605133 )691.1432697722 )691.1432694626 )691.1432704623
Ttotal (m) 141.7 144.6 153.9 172.7
Tstep (s) 23.49 41.94 91.39 193.84
Napx 8,904 7,856 5,323 0
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with

q ¼ q1 þ q2: ð52Þ

Equation (50) can be simplified further,

A�1SA�1q1 ¼ �V ; ð53Þ

and substituted into Eq. (51),

eþ 1

e� 1

A

2
�D

� �

A�1SA�1q2 ¼ �
A

e� 1
A�1SA�1q1 : ð54Þ

Equation (54) can be simplified using the equality
DA)1S=SA)1DT (where T indicates the transpose),

Table 7. The amounts of step time and total time (seconds) by parallel computing with 1–4 nodes, for the molecule OMTKY3-Lys55-a.
The most time-consuming SCF cycle is the fifth one, in which the convergence criterion just shifts from 5·10)4 to 10)8 au. All the
multipole expansion methods are turned on

n =1 n =2 n =3 n =4

Tessellation by GEPOL-GB 329.46 166.39 113.48 86.21
Electronic part of the solute potential 130.73 65.48 43.48 33.43
DIIS phase 1 (566 iterations) 2,882.67 1,597.62 1195.70 984.35
DIIS phase 2 (459 iterations) 3,153.69 1,666.60 1193.59 937.11
Constructing ASC operator Tlm 314.69 157.22 103.10 78.67
Total CPU time for the fifth SCF cycle 6,036.30 3,664.80 2,662.60 2,133.70
Total CPU time to finish the job 19,208.00 10,046.10 7,034.30 5,503.00
Total wall clock time to finish the job 19,212.00 10,243.00 7,191.00 5,901.00
Final SCF energy (hartrees) )691.60884301 (11 iterations)

Table 5. The final SCF energy (E SCF in hartrees) and CPU time of the iterative isotropic IEF–PCM computation for two molecules
by using various criteria (R1 and R2) to classify the regionwise vicinities oftesserae in the multipole expansion representation of the solvent
electrostatic potentials. NREG is the number of regions on the solute cavity surface. Ntotal is the number of pair interactions between the
NREG regions. Nnear is the number of pair interactions classified as near-ranged, Nmid is the number classified as mid-ranged and Nlong is
the number classified as long-ranged. Ttotal is the total CPU time to finish the job and Tphase 1 and Tphase 2 are the step times to finish the
solvent potential evaluations for all the tesserae in phases 1and 2 (for one SCF cycle)

Molecules R1=10, R2=20 R1=15, R 2=30 R1=¥, R 2=¥

OMTKY3-Lys55-a, NREG=417, Ntotal=173,889 ESCF )691.6108164428 )691.6088439233 )691.6088564955
Ttotal (min) 128.6 148.5 175.9
Tphase 1 (s) 0.87 1.62 2.61
Tphase 2 (s) 1.19 2.23 3.77
Nnear 49,013 105,827 173,889
Nmid 101,174 67,642 0
Nlong 23,702 420 0

OMTKY3-Lys55-b, NREG=417, Ntotal=173,889 ESCF )691.1418573043 )691.1431062559 )691.1432704623
Ttotal (min) 134.3 149.9 172.7
Tphase 1 (s) 0.87 1.60 2.62
Tphase 2 (s) 1.17 2.27 3.77
Nnear 49,015 105,871 173,889
N mid 101,216 67,598 0
N long 23,658 420 0

Table 6. The final SCF energy (ESCF in hartrees) and CPU time of the iterative isotropic IEF–PCM computation for the molecules
OMTKY3-Lys55-a and OMTKY3-Lys55-b by using various dASC to define the distant regions in the multipole expansion representation
of the solvent potential. NREG is the number of regions on the solute cavity surface. Napx is the number of distant regions seen as multipole
expansion points by the QM region. Ttotal is the total CPU time to finish the job and Tstep is the step time to finish the computation of the
operator for the basis set (for one SCF cycle)

Molecules NREG dASC=10 Å dASC =15 Å dASC ‡ 20 Å

OMTKY3-Lys55-a 417 E SCF )691.6086616299 )691.6096829997 )691.6088564955
T total (min) 170.9 173.9 175.9
T step (s) 74.11 91.59 103.87
N apx 157 57 0

OMTKY3-Lys55-b 417 E SCF )691.1430719955 )691.1441049901 )691.1432704623
T total (min) 168.0 169.5 172.7
T step (s) 74.26 91.71 103.96
N apx 157 57 0
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eþ 1

e� 1

I

2
�DTA�1

� �

q2 ¼ �
I

e� 1
q1 : ð55Þ

Equations (53) and (55) form the basis of the iterative
method of the isotropic IEF–PCM, when rewritten as
Eqs. (18) and (19) in Sect. 2.3.

Appendix 2

The C-PCM coefficient matrix, S¢ (Eq. 18) is not diag-
onal-dominant and the PJI is divergent. This can be
shown by the following analysis.

Consider the simplest cavity generated byGEPOL-GB
with only one sphere (Fig. 6). The radius of the sphere is
R. InGEPOL-GB, the cavity is generated byprojecting an
inscribed pentakisdodecahedron onto the sphere. The
projections of the faces of the pentakisdodecahedron are
the tesserae, of which there are 60. The projections of the
centers of the triangles are the centers of the tesserae, i.e.
the representative points of the tesserae. Note that these
triangles are not equilateral. The area of each tessera is
exactly 1/60 of the area of the sphere:

ai ¼
4pR2

60
¼ 0:2094R2 : ð56Þ

The side length of such a triangle, l, is approximately

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
ffiffiffi

3
p 4pR2

60

s

¼ 0:7R : ð57Þ

Now consider tessera 1 (Fig. 6). The distance between
tessera 1 and tesserae 2, 3 and 4 is approximately

d1 ¼
ffiffiffi

3
p

3
l ¼ 0:4R : ð58Þ

The distance between tessera 1 and tesserae 5, 6, 7, 8, 9,
10, 11and 12 is approximately

d2 ¼
ffiffiffi

3
p

d1 ¼ 0:7R : ð59Þ

According to Eq. (22), the diagonal elements of matrix
S¢ are

Cii ¼ S0ii
� �

¼1:07

ffiffiffiffiffiffi

4p
ai

s

¼1:07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p
4pR2=60

s

¼8:29R�1 : ð60Þ

Three of the off-diagonal elements will be equal to

1

d1
¼ 2:5R�1 ; ð61Þ

and the sum is 7.5R)1. Eight of the off-diagonal elements
will be equal to

1

d2
¼ 1:4R�1 ; ð62Þ

and the sum is 11.2R)1. Thus, the sum of the 11 off-
diagonal elements corresponding to the closest 11
neighboring tesserae (7.5R)1+11.2R)1=18.7R)1) is al-
ready greater than the diagonal element (8.3R)1); hence,
S¢ is not diagonal-dominant. It can be generally proved
that the GEPOL-GB procedure cannot generate diago-
nal-dominant coefficient matrices, so the convergence of
the PJI method is not guaranteed for C-PCM and
isotropic IEF–PCM ‘‘phase 1’’. Empirically they are
found to be divergent.

The situation for the isotropic IEF–PCM ‘‘phase 2’’
(and D-PCM) is more complicated than that in the
C-PCM and ‘‘phase 1’’. It can be proved that for a well-
tessellated cavity, like the single sphere discussed previ-
ously (Fig. 6), the diagonal elements in Eq. (22) are
approximately

Cii D0ii
� �

¼ 1

2
� eþ 1

e� 1
þ 1:07

ffiffiffiffiffiffiffiffiffi

4pai
p

8pRi

> 0:5þ 0:069 > 0:56:

ð63Þ

The absolute values of the off-diagonal elements are

Cij

�

�

�

� ¼ D0ij

�

�

�

�

�

�
¼ aið~rrj �~rriÞ � n̂ni

4p~rri �~rrj

�

�

�

�

3

�

�

�

�

�

�

�

�

�

�

¼
ai ~rri �~rrj

�

�

�

� � ~rri�~rrjj j
2R

4p~rri �~rrj

�

�

�

�

3

¼ ai

8pR~rri �~rrj

�

�

�

�

: ð64Þ

The sum of the absolute values of the off-diagonal
elements is

X

59

j

Cij

�

�

�

�¼
X

59

j

D0ij

�

�

�

�

�

�
¼
X

59

j

4pR2
�

60

8pR~rri�~rrj

�

�

�

�

¼
4pR2

�

60

8pR

X

59

j

1

~rri�~rrj

�

�

�

�

¼ R
120

X

59

j

1

~rri�~rrj

�

�

�

�

<
R
120
�59 �1

R
<0:50:

ð65Þ

Fig. 6. The pentakisdodecahedron used by GEPOL-GB to generate
tesserae on a spherical cavity. Half (30 in number) of the triangular
faces are shown. The centers of the tesserae are the projections of the
centers of the faces on the sphere, while the areas of the tesserae are
the areas of the projection of the faces on the sphere
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So C and D are diagonal-dominant and the PJI
convergence is guaranteed. However, for a cavity
formed with overlapping spheres, the GEPOL-GB pro-
cedure generates many irregular-polygon-shaped tesse-
rae and the distances among neighboring tesserae might
be too small; thus, they may not be diagonal-dominant
and the convergence is not guaranteed. Empirically both
divergent and convergent cases are found for phase 2.
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